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Abstract
We introduce a very simple, exactly solvable PT -symmetric non-Hermitian
model with a real spectrum, and derive a closed formula for the metric operator
which relates the problem to a Hermitian one.

PACS numbers: 02.30.Tb, 03.65.Db, 11.30.Er

1. Introduction

In a way motivated by the needs of nuclear physics, Scholtz, Geyer and Hahne [1] established a
general mathematical framework for the consistent formulation of quantum mechanics where
a set of observables are represented by bounded non-Hermitian operators A1, . . . , AN with
real spectra in a Hilbert space H. In essence, they conjectured that in similar situations one
may find a bounded positive Hermitian operator �, called metric, which fulfils

A∗
k� = �Ak for all k ∈ {1, . . . , N}, (1)

where A∗
k denotes the adjoint operator of Ak in H.

Several years later, the notion of the metric operator � re-emerged as a particularly useful
mathematical tool in the context of the so-called PT -symmetric quantum mechanics [2, 3]. In
this framework people usually paid attention to the systems with a single observable, namely,
with a Hamiltonian A1 ≡ H �= H ∗ which possesses a real spectrum and for which the
Schrödinger equation is invariant under a simultaneous change of spatial reflection P and time
reversal T .

In the current literature a lot of effort has been devoted to the study of the particular models
of H. For their more detailed reviews and discussion, the reader is referred to the proceedings
of the International Workshops on Pseudo-Hermitian Hamiltonians in Quantum Physics
[4–6]. One finds that the construction of a non-trivial operator � �= I , however difficult,
is a key to the correct probabilistic interpretation of all the PT -symmetric quantum systems
[7–10]. Indeed, it defines ‘the physical’ inner product (·, ·)� := (·,� ·) which makes the
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Hamiltonian H ‘Hermitian’ or, in the language of [1], quasi-Hermitian. For this reason, there
have been many attempts to calculate the metric operator � for the various PT -symmetric
models of interest [11–19]. Because of the complexity of the problem, however, it is not
surprising that most of the available formulae for � are just approximative, usually expressed
as leading terms of perturbation series [17].

The authors of [1] discussed why our knowledge of the new inner product was necessary
for the evaluation of the physical predictions. They emphasized that the theory endowed
with it is a genuine quantum theory satisfying all the necessary postulates. In a fairly recent
continuation of this discussion [20] it has been underlined that in the infinite-dimensional
Hilbert spaces H the requirement of the boundedness of the metric operator � plays a key role
and that it deserves an extremely careful analysis in applications where a naı̈ve approach may
lead to wrong results. In some sense, our present paper may be read as a direct continuation
of the rigorous mathematical discussion in [20].

In particular, we are going to illustrate here that our understanding of (1) for unbounded
operators H as the identity on functions from the operator domain of H (cf (9) below) requires
that � maps the operator domain of H into the operator domain of the adjoint H ∗. In such a
setting we imagined that the best way of finding support for such an argument can be sought
in some exactly solvable PT -symmetric model. We decided to develop a new one, such that
its metric can be obtained in a closed formula and in a rigorous manner.

The model we deal with in the present paper is one-dimensional, defined in the Hilbert
space

H := L2((0, d)),

where d is a given positive number. In this Hilbert space we consider the Hamiltonian Hα ,
which acts as the Laplacian, i.e.,

Hαψ := −ψ ′′,

and satisfies the following Robin boundary conditions:

ψ ′(0) + iαψ(0) = 0 and ψ ′(d) + iαψ(d) = 0. (2)

Here ψ is a function from the Sobolev space W 2,2((0, d)) and α is a real constant. That is,
the operator domain D(Hα) consists of functions with integrable (generalized) derivatives up
to the second order and satisfying (2) at the boundary points. Because of the nature of the
boundary conditions, Hα is not Hermitian unless α = 0, but it is PT -symmetric with the
operators P and T being defined by (Pψ)(x) := ψ(d − x) and T ψ := ψ , respectively.

It seems that our Hamiltonian Hα represents the simplest PT -symmetric model
whatsoever. The nature of the non-Hermitian perturbation invokes the PT -symmetric models
[21–23] involving complex point interactions. But our model is even simpler, since it does
not require any matching of solutions known explicitly off the points where the δ-interaction
is supported.

Indeed, the non-Hermiticity of Hα enters through the boundary conditions only, while
the Hamiltonian models a free quantum particle in the interval (0, d). Consequently, the
spectral problem for Hα can be solved explicitly in terms of sines and cosines (cf section 3
for more details). Furthermore, an explicit form for the eigenfunctions enables us to obtain a
remarkably simple expression for the metric operator.

Theorem 1. Let �(α) be the linear operator defined in H by

�(α) := I + φα
0

(
φα

0 , ·) + �0 + iα�1 + α2�2, (3)
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where I denotes the identity operator in H, (·, ·) is the inner product on H, antilinear in the
first factor and linear in the second one,

φα
0 (x) :=

√
1

d
exp (iαx) (4)

and the operators �0,�1 and �2 act in H as

(�0ψ)(x) := − 1

d
(Jψ)(d), (5)

(�1ψ)(x) := 2(Jψ)(x) − x

d
(Jψ)(d) − 1

d
(J 2ψ)(d), (6)

(�2ψ)(x) := −(J 2ψ)(x) +
x

d
(J 2ψ)(d), (7)

with

(Jψ)(x) :=
∫ x

0
ψ. (8)

Then �(α) is bounded, symmetric, non-negative and satisfies

∀ψ ∈ D(Hα), H ∗
α �(α)ψ = �(α)Hαψ. (9)

Furthermore, �(α) is positive if the condition

αd/π �∈ Z\{0} (10)

holds true.

Note that the metric �(α) tends to the identity operator I as α → 0, which is expected
due to the fact that H0 is nothing else than the (self-adjoint) Neumann Laplacian in H.
Condition (10) ensures that all the eigenvalues of Hα are simple. For simplicity, we do not
consider the degenerate cases in the present paper.

This paper is organized as follows. In the following section 2 we introduce the Hamiltonian
Hα by means of its associated quadratic form; this provides an elegant way of showing that
the operator is closed. The spectral problem for Hα is considered in section 3; in particular,
we show that the spectrum is real and discrete, and write down the explicit eigenfunctions and
eigenvalues. Section 4 contains the main idea of the present paper; namely, we observe that the
eigenfunctions of Hα are expressed in terms of Dirichlet and Neumann complete orthonormal
families in the interval (0, d) and use a special normalization to simplify the eigenfunctions
of the adjoint H ∗

α . These enable us, in section 5, to evaluate certain infinite series defining
the metric operator and prove theorem 1. We conclude the paper in section 6, where we add
several remarks and discuss a possible extension of our model.

2. The Hamiltonian

Let us first introduce the operator Hα in a proper way. We start with the associated sesquilinear
form hα defined in the Hilbert space H by the domain D(hα) := W 1,2((0, d)) and by the
prescription

hα(φ,ψ) := (φ′, ψ ′) + iαφ(d)ψ(d) − iαφ(0)ψ(0). (11)

Here (·, ·) denotes the standard inner product on H; the corresponding norm will be denoted
by ‖·‖.
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Note that the boundary terms in (11) are well defined because the domain of the quadratic
form is embedded in the space of uniformly continuous functions on (0, d) due to the Sobolev
embedding theorem [24]. It is also known that the Sobolev space W 1,2((0, d)) is dense in
H; hence hα is densely defined. Moreover, the real part of hα , denoted by 	hα , is a densely
defined, symmetric, positive, closed sesquilinear form (since it corresponds to the self-adjoint
Neumann Laplacian in H). Of course, hα itself is not symmetric unless α = 0; however,
it can be shown that it is sectorial and closed. To see it, one can use the perturbation result
[25, theorem VI.1.33] stating that the sum of a sectorial closed form with a relatively bounded
form is sectorial and closed provided the relative bound is less than one. In our case, the
imaginary part of hα , denoted by 
hα , plays the role of a small perturbation of 	hα by virtue
of the following result.

Lemma 1. 
hα is relatively bounded with respect to 	hα , with

|(
hα)[ψ]| � ε−1α2‖ψ‖2 + ε(	hα)[ψ]

for all ψ ∈ W 1,2((0, d)) and any positive constant ε.

Proof. Writing |ψ(d)|2 − |ψ(0)|2 = ∫ d

0 (|ψ |2)′ = 2	(ψ,ψ ′), and applying the Schwarz and
Cauchy inequalities to the last term, we obtain the desired result. �

In view of the above properties and the first representation theorem [25, theorem VI.2.1],
there exists a unique m-sectorial operator Hα in H such that hα(φ,ψ) = (φ,Hαψ) for all
φ ∈ D(hα) and ψ ∈ D(Hα) ⊂ D(hα). (Recall that the m-sectorial property means that Hα

is a closed, maximal quasi-accretive operator with the numerical range being a subset of a
sector in the complex plane [25, section V.3.10].) The operator domain D(Hα) consists of
those functions ψ ∈ D(hα) for which there exists η ∈ H such that hα(φ,ψ) = (φ, η) holds
for every φ ∈ D(hα). Furthermore, using the ideas of [25, example VI.2.16], it is possible to
verify that indeed

Hαψ = −ψ ′′, ψ ∈ D(Hα) = {ψ ∈ W 2,2((0, d))|ψ satisfies (2)}. (12)

The above procedure also implies that the adjoint operator H ∗
α is simply obtained by the

replacement α �→ −α.
Summing up the results, we obtain

Proposition 1. The operator Hα defined by (12) is m-sectorial in H and satisfies

H ∗
α = H−α.

3. The spectrum

An important property of an operator being m-sectorial is that it is closed. Then, in particular,
the spectrum is well defined by means of the resolvent operator [25, section III.6]. We claim
that our Hα is an operator with compact resolvent. This can be seen by noting that the
Neumann Laplacian H0 (associated with 	hα) is an operator with compact resolvent and by
using the perturbation result of [25, theorem VI.3.4] together with lemma 1. Consequently, we
know that the spectrum of Hα , denoted by σ(Hα), is purely discrete, i.e., it consists entirely
of isolated eigenvalues with finite (algebraic) multiplicities.

The eigenvalue problem Hαψ = k2ψ , with k ∈ C, can be solved explicitly in terms
of sines and cosines. In particular, the boundary conditions lead to the following implicit
equation for the eigenvalues:

(k2 − α2) sin(kd) = 0. (13)
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That is,

σ(Hα) = {α2} ∪ {
k2
j

}∞
j=1, where kj := jπ/d. (14)

Hereafter we shall use the index j ∈ N to count the eigenvalues as in (14), with the convention
that the eigenvalue for j = 0 is given by α2.

While the spectrum of Hα is real, it exhibits important differences with respect to the
spectra of self-adjoint one-dimensional differential operators. For instance, the spectrum of
Hα may not be simple and even the lowest eigenvalue may be degenerate for particular choices
of α. Note also that Hα coincides with the spectrum of the Neumann Laplacian H0 up to the
lowest (zero) eigenvalue which is shifted to α2.

In this paper we restrict ourselves to the non-degenerate case, i.e., we make hypothesis
(10). Then the eigenfunctions of Hα corresponding to (14) with the convention mentioned
there are given by

ψα
j (x) :=




Aα
0 exp(−iαx) if j = 0,

Aα
j

(
cos(kjx) − i

α

kj

sin(kjx)
)

if j � 1,
(15)

where each Aj is an arbitrary nonzero complex number. In view of proposition 1, the spectrum
of the adjoint H ∗

α coincides with (14) and the corresponding eigenfunctions are given by

φα
j (x) :=




Bα
0 exp(iαx) if j = 0,

Bα
j

(
cos(kjx) + i

α

kj

sin(kjx)
)

if j � 1,
(16)

where each Bj is again an arbitrary nonzero complex number.
We collect the obtained spectral results into the following proposition.

Proposition 2. The spectrum of Hα is real and consists of discrete eigenvalues specified
in (14). If the condition (10) holds, then all the eigenvalues have multiplicity one and the
corresponding eigenfunctions are given by (15).

4. Special normalization

It follows directly by combining the eigenvalue problems for Hα and its adjoint that φα
j and

ψα
k are orthogonal to each other provided j �= k and the non-degeneracy condition (10) holds.

The stronger result

∀j, k ∈ N,
(
φα

j , ψα
k

) = δjk (17)

will hold provided we normalize the eigenfunctions in a special way. Namely, (17) follows
by choosing the coefficients Aα

j and Bα
j according to the equations

1 = Aα
0 Bα

0

1 − exp(−2iαd)

2iα
, (18)

1 = Aα
j Bα

j

(
k2
j − α2

)
d

2k2
j

for j � 1. (19)

(If α = 0, the fraction in the first equation should be understood as the expression obtained
after taking the limit α → 0.) These equations can clearly be satisfied as soon as (10) holds.

We still have a freedom in specifying Aα
j and Bα

j . For further purposes, however, we
choose the coefficients Bα

j in a very simple form by the requirements

B0 :=
√

1/d and Bj :=
√

2/d for j � 1, (20)
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while we leave a more complicated formula, determined by equations (18) and (19), for the
coefficients Aα

j . Then φα
0 coincides with (4) and we have the decomposition

φα
j (x) = χN

j (x) + i
α

kj

χD
j (x) for j � 1, (21)

where
{
χN

j

}∞
j=0, respectively

{
χD

j

}∞
j=1, denotes the set of normalized eigenfunctions of the

Neumann, respectively Dirichlet, Laplacian in H:

χN
j (x) :=

{√
1/d if j = 0,√
2/d cos(kjx) if j � 1,

χD
j (x) :=

√
2/d sin(kjx).

In addition to (21), we also have the uniform convergence φα
0 → χN

0 as α → 0. We point out
the result we shall need later.

Proposition 3. If condition (10) holds true, then the eigenfunctions ψα
j of Hα and the

eigenfunctions φα
j of H ∗

α can be chosen in such a way that they satisfy the biorthonormality
relations (17) and the latter satisfy (21).

The decomposition (21) plays a crucial role in the subsequent section, mainly due to the
fact that

{
χN

j

}∞
j=0 and

{
χD

j

}∞
j=1 are well known to form complete orthonormal families. In

particular, we have the expansions

ψ =
∞∑

j=0

χN
j

(
χN

j , ψ
) =

∞∑
j=1

χD
j

(
χD

j , ψ
)

(22)

and the Parseval equalities

‖ψ‖2 =
∞∑

j=0

∣∣(χN
j , ψ

)∣∣2 =
∞∑

j=1

∣∣(χD
j , ψ

)∣∣2
(23)

for every ψ ∈ H.

5. The metric

With an abuse of notation, we initially define

�(α) :=
∞∑

j=0

φα
j

(
φα

j , ·) (24)

and show that this operator can be cast into form (3) with (4)–(7). In fact, using (21) and (22),
it is readily seen that (3) holds with

�0 := −χN
0

(
χN

0 , ·) (25)

and

�1 :=
∞∑

j=1

χD
j

(
χN

j , ·) − χN
j

(
χD

j , ·)
kj

, �2 :=
∞∑

j=1

χD
j

(
χD

j , ·)
k2
j

. (26)

Recalling definition (8) of the bounded integral operator J in H, it is evident that the rank-one
operator (25) can be expressed in terms of J as in (5). It remains to verify that (26) can be
expressed as in (6) and (7).

First of all, we note that the operator (24) is well defined in the sense that �1 and �2

as defined in (26) are bounded linear operators in H. This can be seen by using (23) and



Closed formula for the metric in the Hilbert space of a PT -symmetric model 10149

the Schwarz inequality. Actually, the series in (26) are uniformly convergent, and �2 can be
written as an integral Hilbert–Schmidt operator, but we will not use these facts. Our way to
sum up the infinite series is based on the following lemma.

Lemma 2.
∞∑

j=1

χD
j (x)χN

j (d)

kj

= −x

d
uniformly for all x ∈ [0, d].

Proof. The series is uniformly convergent due to Abel’s uniform convergence test. Let l
denote the identity function on (0, d), i.e. l(x) := x. Using expansion (22) and integrating by
parts, we get

l =
∞∑

j=1

χD
j

(
χD

j , l
) =

∞∑
j=1

χD
j

((−χN
j

/
kj

)′
, l

) = −
∞∑

j=1

χD
j χN

j (d)d/kj ,

where the last equality follows from the fact that all χN
j with j � 1 are orthogonal to the

constant function χN
0 . This concludes the proof. �

Since Jψ is an indefinite integral of ψ and (Jψ)(0) = 0, an integration by parts yields,
for every ψ ∈ H,(

χN
j , ψ

) = kj

(
χD

j , Jψ
)

+ χN
j (d)(Jψ)(d),(

χD
j , ψ

) = −kj

(
χN

j , Jψ
) = −k2

j

(
χD

j , J 2ψ
) − kjχ

N
j (d)(J 2ψ)(d).

Incorporating these identities into (26) and using (22) together with lemma 2, we obtain
formulae (6) and (7) for (26).

Now we are in a position to prove theorem 1.

Proof of theorem 1. The boundedness of (3) is clear; in particular, crude estimates yield

‖�(α)ψ‖ � (3 + 4αd + 2α2d2)‖ψ‖
for every ψ ∈ H.

Integrating by parts, it is also easy to check that the identity

(ψ,�(α)ψ) = ∣∣(φα
0 , ψ

)∣∣2
+ ‖ψ + iαJψ‖2 − ∣∣(χN

0 , ψ + iαJψ
)∣∣2

(27)

holds for every ψ ∈ H, where the right-hand side is real-valued and non-negative due to (23).
This proves that �(α) is symmetric and non-negative.

Let us show that �(α) is positive provided (10) holds. If the right-hand side of (27) were
equal to zero with a nonzero ψ ∈ H, then the first Parseval equality in (23) would imply that
the function ψ + iαJψ must be constant, being orthogonal to all functions orthogonal to 1.
Consequently, ψ is proportional to ψα

0 and an explicit calculation yields∣∣(φα
0 , ψ

)∣∣ =
∣∣∣∣ sin(αd)

αd

∣∣∣∣ ‖ψ‖,
which is clearly positive for all α satisfying (10).

Finally, let us comment on identity (9). Let ψ ∈ D(Hα). We first note that it is
straightforward to check that �(α)ψ belongs to D(H ∗

α ), so that the left-hand side of (9) makes
sense. We also have

−(�(α)ψ)′′ = −ψ ′′ − 2iαψ ′ + α2ψ + α2φα
0

(
φα

0 , ψ
) = −�(α)ψ ′′.

Here the first equality follows at once, while the second one is not trivial, but it can be verified
by using a number of integrations by parts.

This concludes the proof of theorem 1. �
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6. Concluding remarks

6.1. Alternative proofs of the reality of the spectrum

Recall that PT -symmetry itself is not sufficient to guarantee the reality of the spectrum of
a non-Hermitian operator (see, e.g., [26, 27]). Moreover, the existing proofs of the reality
[28–31] are based on rather advanced techniques. Therefore we find it interesting that the
reality of the eigenvalues of our Hamiltonian Hα can be deduced directly from the structure
of the operator, without solving the eigenvalue problem explicitly.

To see it, we rewrite the eigenvalue problem Hαψ = k2ψ using the unitary transform
ψ �→ φα

0 ψ := φ into the boundary value problem{−φ′′ + 2iαφ′ + α2φ = k2φ in (0, d),

φ′ = 0 at 0, d.
(28)

Now we multiply the first equation in (28) by φ′′ and integrate over (0, d). We also multiply
the complex conjugation of the first equation in (28) by φ′′ and integrate over (0, d). Then we
subtract the results and use various integrations by parts together with the Neumann boundary
conditions to get the identity


(k2)‖φ′‖2 = 0.

Consequently, either the eigenvalue k2 is real or the corresponding eigenfunction φ is constant.
It remains to realize that also the latter implies the former in view of (28).

Finally, let us mention that Hα can be reconsidered as a self-adjoint operator in a Krein
space [29]. Then the reality of the spectrum of Hα for |α| < π/d follows from [29, corollary
3.3]. An alternative proof of the reality of the spectrum of Hα for small α also follows from
the perturbation result of [30].

6.2. Biorthonormal basis

It is easily seen that the operator �(α) defined by (24) formally satisfies (9), with the inverse
given by �(α)−1 = ∑∞

j=0 ψα
j

(
ψα

j , ·), provided
{
ψα

j

}∞
j=0 and

{
φα

j

}∞
j=0 fulfil, in addition to

(17), the following biorthonormal-basis-type relation:

∀ψ ∈ H, ψ =
∞∑

j=0

ψα
j

(
φα

j , ψ
)
. (29)

By ‘formally’ we mean that one has to justify an interchange of summation and differentiation.
We did not pursue this direction in the present paper. Instead, we summed up the infinite series
(24) using the special normalization (20) leading to (21), and checked that the resulting operator
indeed satisfies (1) in the sense of (9).

Nevertheless, let us show that expansion (29) holds:

Proposition 4. If the condition (10) holds true, then the eigenfunctions ψα
j of Hα and the

eigenfunctions φα
j of H ∗

α can be chosen in such a way that (29) is satisfied.

Proof. Assume the special normalization of section 4. Let us first verify that {ψj }αj=0 is a
basis of H, i.e.,

∀ψ ∈ H, ψ =
∞∑

j=0

c
ψ

j ψα
j , (30)
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where
{
c
ψ

j

}∞
j=0 is a unique sequence of complex numbers. Note that equality in (30) should

be understood as a limit in the norm topology of H; in particular, (30) implies the weak
convergence

∀φ,ψ ∈ H, (φ, ψ) = lim
m→∞

(
φ,

m∑
n=1

c
ψ

j ψα
j

)
. (31)

Substituting ψ = 0 and φ = φα
k , k ∈ N, into (31), the biorthonormality relations (17) yield

that (30) with ψ = 0 implies that all c0
j = 0. At the same time,

∥∥ψα
j − χN

j

∥∥2 = α2
k2
j + α2(

k2
j − α2

)2 for j � 1

and since the right-hand side behaves as O(j−2) as j → ∞ we have

∞∑
j=0

∥∥ψα
j − χN

j

∥∥2
< ∞.

Consequently, {ψj }αj=0 is a basis of H due to [25, theorem V.2.20]. Finally, substituting

φ = φα
k , k ∈ N, into (31), the biorthonormality relations (17) yield that c

ψ

j = (
φα

j , ψ
)

for all
j ∈ N. �

The same argument also implies the following expansion:

∀ψ ∈ H, ψ =
∞∑

j=0

φα
j

(
ψα

j , ψ
)
.

6.3. A more general model

For simplicity, we required that α was real in the present paper. A more general model is given
by the following more general PT -symmetric boundary conditions:

ψ ′(0) + (β + iα)ψ(0) = 0 and −ψ ′(d) + (β − iα)ψ(d) = 0, (32)

where α and β are real constants. A straightforward modification of the approach of
section 2 (cf also the first paragraph of section 3) yields

Proposition 5. The operator Hα,β defined in H by

Hα,βψ = −ψ ′′,
ψ ∈ D(Hα,β) = {ψ ∈ W 2,2((0, d)) | ψ satisfies (32)},

is an m-sectorial operator with compact resolvent and satisfies H ∗
α,β = H−α,β .

The eigenvalue problem Hα,βψ = k2ψ , with k ∈ C, can again be solved in terms of sines
and cosines, and one gets the following implicit equation for the eigenvalues:

[k2 − (α2 + β2)] sin(kd) − 2βk cos(kd) = 0.

The main difference with respect to the case β = 0 studied in the present paper is that Hα,β

can possess non-real complex conjugate eigenvalues for β �= 0.
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